of transverse myelitis. No systemic manifestations of SLE appeared during a 4-year follow-up, the residual spastic tetraparesis appeared unchanged and MG was in remission without treatment.

A wide variety of autoimmune diseases have been reported in patients with MG [2]. The association between MG and MS is not considered frequent: in many reports of the literature the diagnosis of MG according to the present criteria appears uncertain [3] and, similarly, the diagnosis of MS was clinically established without the support of laboratory findings. The diagnosis of MG and MS in this young female was made according to widely accepted diagnostic criteria.

Interestingly, this patient developed, after thymectomy, relapsing transverse myelitis that always affected the same cervical level. During these episodes, we found serological features which were strongly suggestive of a collagen vascular disease. Among the various pathogenetic mechanisms that underlie recurrent transverse myelitis, the preexisting MS may be considered a possible candidate. However, the evidence of serological markers of SLE during the relapses of myelitis strengthen the hypothesis of an SLE-related relapsing myelitis. Recurrent transverse myelitis has been reported as an isolated manifestation of SLE [4] and an association between MG and recurrent transverse myelitis with laboratory markers of SLE has been described [5]. The frequency of SLE in MG patients appears higher than expected, and SLE often develops after thymectomy [6, 7], perhaps favored by the loss of T suppressor cells that favors the disease. Also in our patient a decrease in T suppressor cells was detected during each recurrence of transverse myelitis. In this case the genetic background probably played a role in the combination of autoimmune diseases [9]: HLA typing disclosed the contemporaneous presence of B8, DR2 and DR3 HLA antigens which seem to have increased the risk of concurrent autoimmune conditions and thymectomy would appear to be a triggering factor.

References


Maria Rosaria Tola, MD, Institute of Neurological Clinic University of Ferrara, Corso della Giovecce 203, 1-44100 Ferrara (Italy)

Acute Inflammatory CNS Disease after MDMA ('Ecstasy')

Andreas Bitsch, Andreas Thiel, Peter Rieckmann, Hilmar Prange
Department of Neurology, Georg August University, Göttingen, Germany

The amphetamine derivative (±)-3,4-methylenedioxyamphetamine (MDMA, 'ecstasy', 'Adam') (fig. 1) has emerged as a popular drug of abuse over the last two decades. MDMA produces a mixture of central stimulant and psychodelic effects, many of which are mediated by the neurotransmitters dopamine and serotonin [1]. There has been a recent increase in case reports on serious side effects such as psychiatric disorders (panic attacks, depression, paranoid psychoses, flashbacks, catatonic stupor), neurologic diseases (seizures, intracerebral haemorrhage, sinus venous thrombosis, cerebral infarction) and complications outside the nervous system (disseminated intravascular coagulation, fulminant hyperthermia, rhabdomyolysis, acute renal failure, gastrointestinal haemorrhage, acute hepatitis, impaired liver function, aplastic anaemia) [2–6]. We present a case of acute inflammatory cerebral disease associated with heavy MDMA misuse.

A 22-year-old male presented with one generalized seizure after a 5-day history of fever (>39°C) and gradual reduction of vigilance and orientation. Due to increasing respiratory failure mechanical respiration was initiated. Routine laboratory evaluations revealed signs of inflammation with elevated leucocyte count (25,100/µL, 63% segmented) and C-reactive protein (117 mg/L). Magnetic resonance imaging (MRI) showed in the T2-weighted scans disseminated, hypointense white matter lesions in all parts of the brain (fig. 2) with decreased signal intensity and minor gadolinium enhancement in T1-weighted scans. CSF analysis yielded mononuclear pleocytosis (60/µL; 74% lymphocytes, 14% granulocytes, 12% monocytes), elevated protein (901 mg/L) and normal lactate content. Soluble intercellular adhesion molecule 1 (sICAM-1) was detected in CSF and serum with an index of 2.8, indicating an intrathecal synthesis [7]. Electroencephalography revealed an unspesific diffuse alteration. Culture examinations for bacteria and fungi, serologic tests for neurotropic bacteria, fungi and viruses, screening for common vasculitis parameters including rectal biopsy, ultrasonic sonography of cerebral arteries and echocardiography were all negative. After 7 days of treatment (high dose prednisolone, amoxicillin/gentamycin, mannitol 15%, analgesia) the patient gained consciousness. After another 3 days of slight confusion he totally recovered.

After his recovery the patient and his girlfriend reported that he had taken orally an unknown but extensive dose of ecstasy in the evening prior to the acute disease onset. He had practised an abuse of this drug in lower amount (once or twice a week) for half a year before. The consumption of other drugs was denied. Since we got acquainted with this fact too late, we were not capable of detecting MDMA or any other drug in the patient's body fluids neither by gas chromatography nor by thin layer chromatography. Later on, after clinical recovery a second CSF analysis was performed (leucocyte count 10/µL, protein 320 mg/L). MRI revealed resolution of lesions to a high degree, although some were still visible.

Here we report a case of an acute febrile condition with inflammatory CNS involvement following an excessive abuse of MDMA. With regard to MRI and CSF findings either acute disseminated encephalomyelitis (ADEM) or immune-mediated vasculitis may be
considered. However, due to the lack of a recent infectious disease or
infection and the short disease duration with excellent outcome
EM seems rather unlikely. The lesions still visible on second MRI
scans may have been definite infarctions that had been surrounded
by edema on the first series of scans. sCAM was synthesized intra-
leptically but is an unspecific indicator of inflammation and has never
been investigated in cerebral vasculitis so far.

We were not able to exactly define the trigger of this disease. Yet,
the patient had a history of extensive MDMA abuse prior to the acute
disease onset. There is a strong temporal correlation between drug
use and disease onset. Moreover, some of the symptoms presented
the patient are known side effects of MDMA (fever, seizures, psy-
hiatric disturbances) [3]. Because ecstasy is known to be a 'dirty'
drug and frequently combined with other drugs, it is equivocal,
either the syndrome was due to ecstasy alone or to additional
substances.

We suggest that the above described acute inflammatory CNS
disease was triggered by MDMA, possibly initiating a special form of
persensitivity vasculitis. Cerebral vasculitis is a rare complication
of amphetamine intake, but has never been histopathologically con-
cluded in ecstasy abuse so far [8, 9]. MDMA may either serve as a
trigger or induce delayed type hypersensitivity (DTH) via serotonin
release and consecutive activation of DTH effector T cells [10].

References
142:1391.
2 McGuire PK, Cope H, Fahy TA: Diversity of psychopathology associated
with the use of 3,4-methylenedioxymethamphetamine ('Ecstasy'). Br J Psy-
3 Henry JA, Jeffreys KJ, Dawling S: Toxicity and deaths from 3,4-meth-
4 Hughes JC, McCabe M, Evans RJ: Intracranial haemorrhage associated
5 Manchanda S, Connolly MJ: Cerebral infarction in association with
6 Rothwell PM, Grant R: Cerebral venous sinus thrombosis induced by 'ec-
stasy'. J Neurol Neurosurg Psychiatry 1993;56:1035.
7 Rieckmann P, Nunke K, Burchhardt M, Albrecht M, Wiltfang J, Ulrich M,
Felsenhauer K: Soluble intercellular adhesion molecule-1 in cerebrospinal
fluid: An indicator for the inflammatory impairment of the blood-cerebro-
8 Salanova V, Taubner R: Intracranial haemorrhage and vasculitis secun-
9 Criton BP, Haipern M, McCarroll M, Lundberg GD, McCormick R, Pin-
cus LJ, Tatter D, Haverback BJ: Necrotizing angiitis associated with drug
10 Ameisen JC, Meade R, Askenease PW: A new interpretation of the involve-
ment of serotonin in delayed-type hypersensitivity: Serotonin-2 receptor
antagonists inhibit contact sensitivity by an effect on T-cells. J Immunol
1989;142:3171-3179.

Dr. Andreas Bitsch, Klinik und Poliklinik für Neurologie
Georg-August-Universität Göttingen, Robert-Koch-Strasse 40
D-37075 Göttingen (Germany)